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I. INTRODUCTION

The performance of an LMS (Least Mean Square) adaptive array [11

can be different with modulated interference than with single frequency

(CW) interference. Under certain conditions, interference modulated at

a rate slow enough to be tracked by the array feedback can cause the

weights to vary continuously and prevent them from reaching steady-

state. In this situation the output signal-to-interference-plus-noise

ratio (SINR) from the array varies continuously and the array modulates

the desired signal.

Pulsed interference is a simple example of modulated interference.

The effect of a pulsed interference signal on an adaptive array has been

described in [2]. It was shown, for example, that when the array

receives a differential phase-shift keyed (DPSK) communication signal,

pulsed interference increases the bit e!--w: probability more than CW

interference for certain choices of the iw,,al parameters.

.m The behavior of an LMS array has also been described for a

double-sideband, suppressed carrier, amplitude modulated (DSBSC-AM)

interference signal[3]. This special modulation was studied because it

results in a differential equation for the array weights that can be

* solved. (Arbitrary types of interference modulation lead to an

intractable mathematical problem.) For DSBSC-AM interference, the array

weights satisfy a vector differential equation with properties similar

.-
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to the classical Mathieu equation [4]. By using an approach similar to

the classical technique, it is possible to obtain the complete behavior

of the array weights for this type of interference. It was shown in [31

that DSBSC-AM interference can cause the array to modulate the desired

signal envelope, but that its effect on bit error probability with a

DPSK signal is not much different than that of CW interference.

The purpose of the present report is to extend the technique used

in [3] to handle interference with more general types of envelope

modulation. The technique we present here requires that the

interference have only envelope modulation (I.e., no phase modulation)

and that the interference modulation be periodic. Also, it must be

possible to approximate the interference modulation with a finite number

of Fourier Series terms. In principle the number of terms used can be

any finite number, but in practice the computational effort increases

with the number of terms.

To illustrate the use of this method, we examine the LMS array

performance with a simple amplitude modulated (AM) interference signal

*-. (a carrier and two sidebands). In general, this interference has the

same effects on array performance as pulsed and DSBSC-AM interference:

*it causes the array output SINR to vary with time, and it produces

envelope modulation, but not phase modulation, on the desired signal.

2
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Section II of the report presents a method that can be used to

. determine the array weights and evaluate the array performance for an

interference signal with arbitrary periodic envelope modulation.

Section III presents calculated results obtained with this method for an

AM interference signal. Section IV contains the conclusions.

II. FORMULATION OF THE PROBLEM

Consider an adaptive array with three isotropic elements a half

wavelength apart, as shown in Figure 1. The analytic signal x.(t) from
o.1

element j is multiplied by complex weight wj and summed to produce the

array output i(t). The error signal Z(t) is the difference between the

reference signal F(t) and the array output i(t). The array weights are

contolled by LMS feedback loops [1,5] and satisfy the system of

*N equations

dW + kWkS (1)

where W = (wl,w 2 ,w3)T is the weight vector, 0 is the covariance matrix,

0 = E(X*XT) (2)

S is the reference correlation vector,

S = EX*r(t)], (3)

3
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Figure 1. A Three-Element LMS Aray.
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and k is the LMS loop gain. In these equations, X is the signal vector,

'X = [Zl(t), Z2(t), x3(t)]T (4)

T denotes transpose, * complex conjugate, and E[.] expectation.

We assume that a desired and an interference signal are incident on

the array and that thermal noise is also present in each element inal.

The signal vector then contains three terms,

X Xd + Xi + Xn, (5,

where Xd, Xi and Xn are the desired, interference and thermal noise

vectors, respectively.

We assume the desired signal is CW and incident from angle Od

* -relative to broadside. (e is defined in Figlre 1.) The desired signal

vector is then

Xd = AdeJ (ot+Idd (6)

where Ad is the amplitude, wo is the carrier frequency, *d is the

carrier phase angle, and Ud is a vector containing the interelement

phase shifts,

Ud = (1, e j d, e- 2 d)T (7)

with

d= wsinOd • (8)

5
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We assume 'd is a random variable uniformly distributed on (0,27).

Next, we assume an envelope modulated interference signal, as shown

in Figure 2, arriving from angle Oi. The interference signal vector is

a1(t)

Xi  = AieJ (Wot+)i) a i(t-Ti )e -j oTi

a.(t2T)j 2 woTi (9)
a 1

where Ai is the amplitude, ai(t) is the envelope modulation received on

element 1, *i is the carrier phase angle, and Ti is the interelement

time delay,

Ti = sine. (10)
WO

We assume *i is a random variable uniformly distributed on (0,2w) and

statistically independent of *d.

We assume the modulation envelope ai(t) is a periodic waveform.

To make the definitions of ai(t) and Ai unique, we assume ai (t) has a

peak value of unity during the period:

max ai(t) 1
v ' (11)

0 t T

* where T is the period of ai(t). With this normalization, A2i is the peak

interference power per array element. In addition, we assume the rate

.--
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of change of ai(t) is small enough that ai(t) changes only a negligible

amount during the propagation time 2Ti across the array. (Or,

equivalently, we assume that the bandwidth of aj(t) is very small

compared to the carrier frequency wao.) Under this condition, the

modulation envelopes in (9) are all essentially the same,

ai(t) =ai~t-Ti) =ai(t-2Ti) (12)

so (9) may be written

=i A~.t (Wot+3i )U (13)

where

=(e. e 2 i) (14)

with

=i ubTi = rsin~i .(15)

Finally, we assume the thermal noise vector is given by

Xn [nl(t). n2(t), n3(t] (16)

I--.

whereange ofa(t )are zero-mean, gaussian thermal noise voltages, all

:'-' amwhereth drng(thepoaaintm)T ars h ra.(r

statistically independent of each other and of *d and i , and each of

power 02. Thus,

E[nj*(t)nk(t)] - a 2  T  (17)

8
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Under these assumptions, the covariance matrix in (2) becomes

b •'-:-" +0 = d + 01 + On ,( 8

. "with

A 2,* T (19)
AdUdUd

.= 2 (t )U U  (2n)

and

n (21)

where I is the identity matrix.

To compute the reference correlation vector S in (3), the reference

signal r(t) must first be defined. In practice, the reference signal is

" usually derived from the array output [6-8]. It must be a signal

correlated with the desired signal and uncorrelated with the

interference. Here we assume the reference signal to be a replica of

the desired signal,

j (Nt+*d)
r(t) = Are

(22)

Equation (3) then yields

S = AU (23)

Equations (18)-(21) and (23) can now be inserted into (1) to give

the differential equation for the weight vector W,

9



d c*T*T kA A U-L Ad'd T  A (t)UiUi]W(t) kradd * (24)

Before solving (24) we put it in normalized form. First, dividing by

k02 gives

dW*ti + [I A T + a (t,) UUT ]W(t,) Ar F / Ud (25)+t d d + ddd + I =--Cr

where

2
Ed A = input signal-to-noise ratio (SNR) per element.

c2

A1
.=- = peak input interference-to-noise ratio (INR) per

.2 element,

and where we have also used a normalized time variable,

t'= ko2t = normalized time.

Next, we note that the constant Ar/O on the right side of (25) will just

appear as a scale factor in the solution for W. It has no effect on the

array output signal-to-noise ratios to be computed below. Hence, we

" arbitrarily set Ar/a=1 to eliminate it. Finally, by defining

* T
1I + &dUdUd ,(26)

Equation (25) may be written

lip0



_W t *+ 2 (27)m + I+ Eia (t')U Ui]W(t') = d U(27

Since we assumed ai (t) to be a periodic waveform, a1 (t') is also

a periodic and may be expanded in a Fourier series:

2-(t)= P ej X in t  (28)

where the P are the Fourier coefficients and w' is the normalized
m

fundamental frequency of al(t'). (w' is equal to wm/ka 2 , where w is
mm m

the fundamental frequency of ai(t).) As discussed above, ai(t) is

assumed to have a bandwidth small compared with the carrier frequency

wo. In particular, we shall assume that only a finite number of

coefficients in (28) are nonzero, i.e., that Pt=O for all 1tj>L, where

L is some integer. Equation (28) is then

L'~ ~ j 1 IMt
a1 (t') = p • (29)

Equation (27) is a linear vector differential equation with a

constant source term on the right but with periodic time-varying

coefficients. As has been discussed by D'Angelo [91, the solution for

W(t') will be a periodic function of time after the initial transients

Lhave died out. In this report, we do not consider the initial

transients. We concentrate on the periodic steady-state solution for

ef •1



W(t'). Once any initial transients have ended, W(t') can be represented

by a Fourier Series,

W(t') = Z C eJnmt (30)
n=

where Cn is a vector Fourier coefficient. Substituting (29) and (30)

into (27) and collecting terms with the same frequency, we find that the

coefficients Cn must satisfy

(Jnw'0) I L C U 6no, -- <n<

(31)

This equation may be solved for the Cn by expressing each Cn in terms of

its components parallel and perpendicular to the vector Ui  To do this,

we form a set of three orthonormal basis vectors* ek

e' e k  1e j k 4 3 (32)
J k k 1 • 3

(where t is conjugate transpose). We let el be a unit vector parallel

to U.:

eUi (33)

*The array has 3 elements, so W(t') and Cn each have 3 components.

Three basis vectors are needed to span the space for Cn.

, 12



We let e2 be perpendicular to el and lie in the plane defined by

Ud and U1:

-e2 C= - t 1  (34)

where c and i are constants. Enforcing the orthonormality condition

(32) yields

. "K =UiUd (35)

UM,

andZ':- " Q~o• ^ -112

.T "'"* IUiUdI / . (36)

The third vector e3 can readily be found from eI and e2 but will not he

needed below, so we shall not compute it explicitly.

Each coefficient Cn may be written in terms of the unit vectors

ek as

3
Cn= I %,k ek (37)

k=1

where the oh,k are scalar coefficients. an,k is the component of Cn

along the unit vector ek.

'1 "'- 13
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Substituting (37) into (31) and multiplying the result on the left

by e' (for p =1, 2 or 3) gives
p

3 3
jn W a~~ 6 + f

m k=1 nk pk k=1 n,k pk

lpi t=L n-t,k (ek)

- Jd (etU*) no(38)

where

fp =e pOek (39)

The values of the fpk may be found from (26) and (32) -(36). The

result is

T *2
fi 1 + d I~~I(40)

f =12 + 'Ed (41)

2
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U f = 9 lf23 f32 =0 , (43)

and

f = 1 (44)

m

To determine the o,k, we proceed as follows. First, since
t* t*

e3U i  e 3tUd  ., applying (38) for p = 3 gives

an, 3  0 ,--<n<- (45)

Then, since e2U = 0, applying (38) for p = 2 and rearranging gives

U~( ____(46)___an,2  2 ~ d)t6no - cn,1f121 (6
n,2 inw' + fm 22

This equation allows us to calculate the Os,. from anl. Hence, the

problem of determining W(t') is reduced to the problem of finding the

* " an,1

To obtain the an,I, we apply (38) for p = 1 and use (46) to

substitute for On, 2. This process yields the following relation between

the anl:

.- 15



L
hc + n-P C~n (47)
n n,1 L e n-i.,1 no

where

a 2
h (fll+jnwm)(f 22+Jnwm) -If21 (48)
n (f22+jnwm)IUi12

and

C = e 12 e * (49)
-iu!I2  1 T22 2 d

Equation (47) holds for each value of n and is a 2L+1 term

recursion relation between the an,j. If the values of an, 1 were known

for 2L successive terms, one could find all the other an,j from (47).

However, if one starts with an arbitrary initial set of 2L terms, the

an,I will not converge. Since the solution for W(t') in (30) must

converge, the %,1 must approach zero as n+-. To obtain a solution for

W(t'), we therefore use the following method. We assume that there is

some N such that for all Inl>N, the an I are essentially zero, i.e., we

assume that W(t') in (30) can be adequately approximated by a finite

sum

W(t') = C nCmt

n=-N

--" 16



77.

If the an, I are zero for lnl>N, then the recursion relation (47) reduces

to the finite system of equations,

P N + 0 P1 . . L 0 ..... 0 •  - ,1 0"

N -coN.

-1 o- 01 L

P0 . . . .P P 1 h • P 0 P - 0 0 N -1 0

0 . . . .*0. . . 0 P L* . . . . .. -1 h N + P 0  a-N,1 0

The nonzero an,j can be found by solving (51) numerically.

For this approach to yield accurate results, N must in fact be

large enough that at least 21 of the cmij are essentially zero on each

end of the cmn,j vector in (51). If this vector has 2L zeros on each

end, the solution obtained from (51) will be the same as the solution of

the infinite system in (47). In practice, a suitable value of N may be

determined by increasing N until the anij vector has 21 terms on each

17
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end that are essentially zero. Experience in specific cases quickly

shows how large N must be. Once the at,1 are determined, the an,2 may

be found from (46). From ao, and ao,2 (and oh,3=O), the Cn may be

evaluated from (37) and W(t') from (30).

The time-varying weights in (30) have two effects on array

performance. First, they cause the array to modulate the desired

signal. (The array becomes a time-varying, or frequency dispersive,

channel [10]). Second, the array output signal-to-interference-plus-

noise ratio (SINR) varies periodically with time.

Given a time-varying weight vector W(t'), the desired signal

component of the array output is

""A AWT (t.'

5-t)" dt =)Ude o  (52)

(where wi=w/ka 2). To study the modulation on id(t), we define

ad(t')e d = AdWT(t')Ud . (53)

Then ad(t')=AdIWT(t')ldl is the envelope modulation and nd(t')=<WT(t' )Ud

is the phase modulation. Furthermore, we define adn(t') to be the

envelope normalized to its value in the absence of interference, i.e.,

18-°- -- - - -"-- -



adl~) ad(ti) (54)

AdWT UdI

where W0 is the steady-state weight vector that would occur without

interference,

Wo (Od O n)-iS. (55)

(Od, 'On and S are given in (19), (21) and (23).) The results below are

presented in terms of adn(t') rather than ad(t') because the effect of

the interference can be seen by comparing adn(t') with unity.

The output desired signal power is

Pd(t') =(1/2)E{Isd(t')} (1)A 2 Wt)Id? *56

The output interference signal is

=itl W(t-)x = A a (O)W (t)U ie1 ~ (57

and the output interference power is

P(t.) (1/2)E{jI 1(t)I 2 1 (1/2)A~a 2(t)IW T(t-)Ji 2 (58)

The output thermal noise power is

P t 2t(9



From these quantities, the output interference-to-noise ratio (INR),

INR Pi(t') (60)

and the output signal-to-interference-plus-noise ratio (SINR),

SINR = Pd(t') (61)SI.R Pi(t') + Pn(t')

may be computed as functions of t'.

In the next section, we present an example to illustrate the use of

this technique.

III. AN EXAMPLE

Consider a modulation envelope of the form

ai(t') =1 (1+cosw't') (62)
1 7 m

For this ai(t'), the interference is an ordinary amplitude modulated

*signal, as shown in Figure 2, with 100% modulation. The coefficient 1/2

*- in (62) is included to normalize ai(t') as in (11). The Fourier

coefficients of

a* 2 =1' (i+cosw't') 2  (63)

20
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are

P 3 (64)

* ~±1=~(65)

and

P -1 (66)

The system in (51) becomes

h +p P P 0 0 0. .0 l 0
N 0 1 2N~

P- h N- P P PI 2 0 0 0 aN- 0

0 -P . . . 4n'

*-2 *1 0 0 1 2
* 4 4 40

+ 4 4 4

0 0 . . . .4 - -1 hN 0 N1

(67)

whr n aedfndi (48 an (4

* 4 4 21



In general, one finds that the number of terms N needed to

construct W(t') from the series (50) varies with the signal parameters.

- In each case, one must increase N until the first four terms on each end

of the n,1 vector in (67) are essentially zero and until the values of

cn, 1 for small n are not affected by further increases in N. To solve

(67), we have used Gauss elimination with full pivoting [11,12] and also

double precision (16 decimal places on the VAX-11/780). In initial

tests of this method, the weight vector W(t') was checked in numerous

cases against Runge-Kutta solutions [11,121 of (1).

As discussed above, time varying weights have two effects on array

performance. They cause the array to modulate the desired signal, and

they cause the array output signal-to-interference-plus-noise ratio

(SINR) to vary periodically with time. In part A below, we show typical

curves of desired signal modulation, output INR and SINR as functions of

time. In Parts B-E, we describe the effect of each signal parameter on

the desired signal modulation. In Part F, we assume the array is used

in a digital communication system and describe the effect of this

interference on bit error probability.

A. Typical Waveforms

Figures 3, 4 and 5 show typical curves of adn(t'), output INR and

SINR as functions of time over one period of the modulation. These
0

- curves are for the case Od=O °, Oi=5, Fd=1 0 dB, Ei=20 dB and

22
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00 0.1 0 .2 0.3 OS4 0.5

TIME

Figure 3. Adn(t') versus time. Figure 4. INR versus time.
Od=00, Oi= 50' Q=10 dB. eBJ=00, Oi=50  Ed=10 dB.

*~ ~ . =20 dB, f'=2. F=20) dB, f' 2.
1m 1 m=

~C;

-5 E-10 dB.
E -20 dB, fm-2.
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fm= 2 (where fm= 4n). As may be seen, for this set of parameters, the

AM interference signal produces substantial envelope modulation, and the

output INR and SINR vary considerably over the modulation period.

Calculations of the phase nd(t') in (53), on the other hand, show

that nd(t') is constant. The adaptive array does not produce phase

modulation on the desired signal with this interference. This important

result occurs for all signal parameters, not just those used in Figures

3 through 5. The same result was also found for pulsed interference [2]

and for DSBSC-AM interference [3].

Figures 3 through 5 are intended merely to illustrate typical array

behavior with AM interference. In general, the desired signal

modulation and the SINR variation depend greatly on the choice of signal

parameters ed, {d' li, i and fm. In Parts B-E below, we describe the

effect of each signal parameter on the desired signal modulaiton. To

* ,characterize the desired signal modulation, we define three quantities.

First, we let amax and amin be the maximum and minimum values of adn(t')

during the modulation period. Then we define

m'=mamax - amin (68)
amax

m is the fractional modulation on the desired signal. We shall refer to

amax as the envelope peak and to m as the envelope variation. In Parts

B-E, we describe how m and amax depend on each signal parameter.

24
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B. The Effect of Angle of Arrival

"..' Desired signal modulation is small unless ei is close to 6m. When

e1 is far from ed, the envelope variation m is small and the peak amax

-is close to unity. Figures 6 and 7 show typical curves of m and amax as

functions of 0. for the parameters 0d=00, Ed=10 dB and f =2. Two curves
Sd 0  d ad m=

are shown on each figure, for Et=10 dB and 20 dB.

C. The Effect of Modulation Frequency

The variation m and the peak a are large at low f' and drop as
max m

f' increases. Figures 8 and 9 show m and a as functions of f' form max m
the case Od=O0 , q=O dB and Ei=20 dB.

0. The Effect of Interference-to-Noise Ratio

For low f', the variation m is largest at high INR. For
m

intermediate values of f', m peaks at intermediate INR. a is unity
m max

1 for low f' and drops to a minimum at high f. The larger the INR, the
m m

farther amax drops for large fm. These effects may be seen in Figures
max m

10 and 11, which show m and amax for Od=00 , Oi=50, Ed=O dB and for five

values of EI between 0 and 30 dB.

E. The Effect of Desired Signal-to-Noise Ratio

* The variation m is largest and the peak amax is smallest for low

q j. As Ed is increased, m decreases and amax increases. Figures 12 and

25

6°, .



-r 20dB

C OdS

-90. -60. -30. 'o. 30. 60. 90

f DEGOREES)

Figure 6. m versus ei
0 d=00 =10 dB, f'=2.

*Figure 7. amax versus 61
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3m 13 show m and amax for Od=O0 , Oi=5 ° , Ei=20 dB and for four values of Ed

between 0 and 30 dB. It is seen that for a given Ed, m peaks at

intermediate values of f.m"
m

F. Bit Error Probability

To evaluate the effect of the time-varying SINR, we assume the

desired signal is a DPSK biphase modulated signal [13]. We assume the

bit rate on the desired signal is much larger than the modulation

frequencies in ai(t). As shown in [2,3], under these conditions we may

ri determine the effective bit error probability 7e by averaging the

instantaneous bit error probability over one period:

=ll }f 1 eSINR(t') dt'0i (69)

I'no

Figure 14 shows typical curves of T~ as a function of f' for
e m

8d=00 , ei=300 , Ed=6 dB and for several values of Ei between -10 dB and

30 dB. It is seen that the average bit error probability is affected

" . very little by f'. It may be shown that TFe is essentially the same as

that for CW interference with an INR of (3/8 )ti , i.e., with the same

time-average power as the AM interference signal.
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IV. SUMMARY

We have developed a mathematical technique for computing the array

weights when the array is subjected to interference with periodic

envelope modulation. Our approach requires that the envelope modulation

be modeled with a finite number of Fourier Series terms.

* To illustrate the use of this technique, we have evaluated the

effects of an AM interference signal on the array. It was shown that

the major effect of AM interference is to cause envelope modulation, but

not phase modulation, on the desired signal. The effects of each signal

parameter on desired signal modulation have been described. When the

desired signal is a DPSK signal, AM interference was found to have

essentially the same effect on bit error probability as CW interference.

These results are similar to those obtained for DSBSC-AM

interference [3].
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